Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Second quantization

Let us consider an operator proportional with a_\alpha^{\dagger} a_\beta and \alpha=\beta . It acts on an n -particle state resulting in \begin{equation} a_\alpha^{\dagger} a_\alpha |\alpha_1\alpha_2 \dots \alpha_{n}\rangle = \begin{cases} 0 &\alpha \notin \{\alpha_i\} \\ \\ |\alpha_1\alpha_2 \dots \alpha_{n}\rangle & \alpha \in \{\alpha_i\} \end{cases} \tag{28} \end{equation} Summing over all possible one-particle states we arrive at \begin{equation} \left( \sum_\alpha a_\alpha^{\dagger} a_\alpha \right) |\alpha_1\alpha_2 \dots \alpha_{n}\rangle = n |\alpha_1\alpha_2 \dots \alpha_{n}\rangle \tag{29} \end{equation}