With this expression we can now verify that the second quantization form of \( \hat{H}_I \) in Eq.
(53)
results in the same matrix between two anti-symmetrized two-particle states as its corresponding coordinate
space representation. We have
$$
\begin{equation}
\langle \alpha_1 \alpha_2|\hat{H}_I|\beta_1 \beta_2\rangle =
\frac{1}{2} \sum_{\alpha\beta\gamma\delta}
\langle \alpha\beta|\hat{v}|\gamma\delta\rangle \langle 0|a_{\alpha_2} a_{\alpha_1}
a^{\dagger}_\alpha a^{\dagger}_\beta a_\delta a_\gamma
a_{\beta_1}^{\dagger} a_{\beta_2}^{\dagger}|0\rangle. \tag{54}
\end{equation}
$$