We can now let \( \hat{H}_I \) act on all terms in the linear combination for \( |\alpha_1\alpha_2\dots\alpha_n\rangle \). Without any permutations we have
$$
\begin{eqnarray}
&& \left( \sum_{i < j} V(x_i,x_j) \right) \psi_{\alpha_1}(x_1)\psi_{\alpha_2}(x_2)\dots \psi_{\alpha_n}(x_n) \nonumber \\
&=& \sum_{\alpha_1'\alpha_2'} \langle \alpha_1'\alpha_2'|\hat{v}|\alpha_1\alpha_2\rangle
\psi_{\alpha_1}'(x_1)\psi_{\alpha_2}'(x_2)\dots \psi_{\alpha_n}(x_n) \nonumber \\
& +& \dots \nonumber \\
&+& \sum_{\alpha_1'\alpha_n'} \langle \alpha_1'\alpha_n'|\hat{v}|\alpha_1\alpha_n\rangle
\psi_{\alpha_1}'(x_1)\psi_{\alpha_2}(x_2)\dots \psi_{\alpha_n}'(x_n) \nonumber \\
& +& \dots \nonumber \\
&+& \sum_{\alpha_2'\alpha_n'} \langle \alpha_2'\alpha_n'|\hat{v}|\alpha_2\alpha_n\rangle
\psi_{\alpha_1}(x_1)\psi_{\alpha_2}'(x_2)\dots \psi_{\alpha_n}'(x_n) \nonumber \\
& +& \dots \tag{45}
\end{eqnarray}
$$
where on the rhs we have a term for each distinct pairs.