We can continue by computing all possible permutations.
We rewrite also our Slater determinant in its second quantized form and skip the dependence on the quantum numbers \( x_i. \)
Summing up all contributions and taking care of all phases
\( (-1)^p \) we arrive at
$$
\begin{eqnarray}
\hat{H}_0|\alpha_1,\alpha_2,\dots, \alpha_n\rangle &=& \sum_{\alpha_1'}\langle \alpha_1'|\hat{h}_0|\alpha_1\rangle
|\alpha_1'\alpha_2 \dots \alpha_{n}\rangle \nonumber \\
&+& \sum_{\alpha_2'} \langle \alpha_2'|\hat{h}_0|\alpha_2\rangle
|\alpha_1\alpha_2' \dots \alpha_{n}\rangle \nonumber \\
&+& \dots \nonumber \\
&+& \sum_{\alpha_n'} \langle \alpha_n'|\hat{h}_0|\alpha_n\rangle
|\alpha_1\alpha_2 \dots \alpha_{n}'\rangle \tag{35}
\end{eqnarray}
$$