Consider the action of \( a^{\dagger}_{\alpha_2} \) on various slater determinants:
$$
\begin{array}{ccc}
a^{\dagger}_{\alpha_2}\Phi_{00111}& = a^{\dagger}_{\alpha_2}|00111\rangle&=0\times |00111\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{01011}& = a^{\dagger}_{\alpha_2}|01011\rangle&=(-1)\times |01111\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{01101}& = a^{\dagger}_{\alpha_2}|01101\rangle&=0\times |01101\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{01110}& = a^{\dagger}_{\alpha_2}|01110\rangle&=0\times |01110\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{10011}& = a^{\dagger}_{\alpha_2}|10011\rangle&=(-1)\times |10111\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{10101}& = a^{\dagger}_{\alpha_2}|10101\rangle&=0\times |10101\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{10110}& = a^{\dagger}_{\alpha_2}|10110\rangle&=0\times |10110\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{11001}& = a^{\dagger}_{\alpha_2}|11001\rangle&=(+1)\times |11101\rangle\\
a^{\dagger}_{\alpha_2}\Phi_{11010}& = a^{\dagger}_{\alpha_2}|11010\rangle&=(+1)\times |11110\rangle\\
\end{array}
$$
What is the simplest way to obtain the phase when we act with one annihilation(creation) operator
on the given Slater determinant representation?