The next term \( \hat{H}_I^{(b)} \) reads
$$
\begin{equation}
\hat{H}_I^{(b)} = \frac{1}{4} \sum_{abci}\left(\langle ab|\hat{V}|ci\rangle b_a^\dagger b_b^\dagger b_i^\dagger b_c +\langle ai|\hat{V}|cb\rangle b_a^\dagger b_i b_b b_c\right) \tag{81}
\end{equation}
$$
This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state.
For \( \hat{H}_I^{(c)} \) we have
$$
\begin{eqnarray}
\hat{H}_I^{(c)}& =& \frac{1}{4}
\sum_{abij}\left(\langle ab|\hat{V}|ij\rangle b_a^\dagger b_b^\dagger b_j^\dagger b_i^\dagger +
\langle ij|\hat{V}|ab\rangle b_a b_b b_j b_i \right)+ \nonumber \\
&& \frac{1}{2}\sum_{abij}\langle ai|\hat{V}|bj\rangle b_a^\dagger b_j^\dagger b_b b_i +
\frac{1}{2}\sum_{abi}\langle ai|\hat{V}|bi\rangle b_a^\dagger b_b. \tag{82}
\end{eqnarray}
$$