The hermitian conjugate has the folowing properties
a_{\alpha} = ( a_{\alpha}^{\dagger} )^{\dagger}.
Finally we found
a_\alpha\underbrace{|\alpha_1'\alpha_2' \dots \alpha_{n+1}'}\rangle_{\neq \alpha} = 0, \quad
\textrm{in particular } a_\alpha |0\rangle = 0,
and
a_\alpha |\alpha\alpha_1\alpha_2 \dots \alpha_{n}\rangle = |\alpha_1\alpha_2 \dots \alpha_{n}\rangle,
and the corresponding commutator algebra
\{a_{\alpha}^{\dagger},a_{\beta}^{\dagger}\} = \{a_{\alpha},a_{\beta}\} = 0 \hspace{0.5cm}
\{a_\alpha^{\dagger},a_\beta \} = \delta_{\alpha\beta}.