Defining
$$
\begin{equation}
\hat{h}_0(x_i) \psi_{\alpha_i}(x_i) = \sum_{\alpha_k'} \psi_{\alpha_k'}(x_i) \langle\alpha_k'|\hat{h}_0|\alpha_k\rangle \tag{32}
\end{equation}
$$
we can easily evaluate the action of \( \hat{H}_0 \) on each product of one-particle functions in Slater determinant.
From Eq.
(32) we obtain the following result without permuting any particle pair
$$
\begin{eqnarray}
&& \left( \sum_i \hat{h}_0(x_i) \right) \psi_{\alpha_1}(x_1)\psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\
& =&\sum_{\alpha_1'} \langle \alpha_1'|\hat{h}_0|\alpha_1\rangle
\psi_{\alpha_1'}(x_1)\psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\
&+&\sum_{\alpha_2'} \langle \alpha_2'|\hat{h}_0|\alpha_2\rangle
\psi_{\alpha_1}(x_1)\psi_{\alpha_2'}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\
&+& \dots \nonumber \\
&+&\sum_{\alpha_n'} \langle \alpha_n'|\hat{h}_0|\alpha_n\rangle
\psi_{\alpha_1}(x_1)\psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n'}(x_n) \tag{33}
\end{eqnarray}
$$