The two-body operator can also be expressed in terms of the anti-symmetrized matrix elements we discussed previously as
$$
\begin{eqnarray}
\hat{H}_I &=& \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \langle \alpha \beta|\hat{v}|\gamma \delta\rangle
a_\alpha^{\dagger} a_\beta^{\dagger} a_\delta a_\gamma \nonumber \\
&=& \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \left[ \langle \alpha \beta|\hat{v}|\gamma \delta\rangle -
\langle \alpha \beta|\hat{v}|\delta\gamma \rangle \right]
a_\alpha^{\dagger} a_\beta^{\dagger} a_\delta a_\gamma \nonumber \\
&=& \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \langle \alpha \beta|\hat{v}|\gamma \delta\rangle_{\mathrm{AS}}
a_\alpha^{\dagger} a_\beta^{\dagger} a_\delta a_\gamma \tag{58}
\end{eqnarray}
$$