Here we let \( \sum' \) indicate that the sums running over \( \alpha \) and \( \beta \) run over all
single-particle states, while the summations \( \gamma \) and \( \delta \)
run over all pairs of single-particle states. We wish to remove this restriction and since
$$
\begin{equation}
\langle \alpha\beta|\hat{v}|\gamma\delta\rangle = \langle \beta\alpha|\hat{v}|\delta\gamma\rangle \tag{49}
\end{equation}
$$
we get
$$
\begin{eqnarray}
\sum_{\alpha\beta} \langle \alpha\beta|\hat{v}|\gamma\delta\rangle a^{\dagger}_\alpha a^{\dagger}_\beta a_\delta a_\gamma &=&
\sum_{\alpha\beta} \langle \beta\alpha|\hat{v}|\delta\gamma\rangle
a^{\dagger}_\alpha a^{\dagger}_\beta a_\delta a_\gamma \tag{50} \\
&=& \sum_{\alpha\beta}\langle \beta\alpha|\hat{v}|\delta\gamma\rangle
a^{\dagger}_\beta a^{\dagger}_\alpha a_\gamma a_\delta \tag{51}
\end{eqnarray}
$$
where we have used the anti-commutation rules.