Finally if the state vector does not contain \( \alpha \) and \( \beta \)
$$
\begin{eqnarray}
a_\alpha^{\dagger} a_\beta |\underbrace{\alpha_1\alpha_2 \dots \alpha_{n}}_{\neq \alpha,\beta}\rangle &=& 0 \nonumber \\
a_\beta a_\alpha^{\dagger} |\underbrace{\alpha_1\alpha_2 \dots \alpha_{n}}_{\neq \alpha,\beta}\rangle &=&
a_\beta |\alpha \underbrace{\alpha_1\alpha_2 \dots \alpha_{n}}_{\neq \alpha,\beta}\rangle = 0 \tag{25}
\end{eqnarray}
$$
For all three cases we have
$$
\begin{equation}
\{a_\alpha^{\dagger},a_\beta \} = a_\alpha^{\dagger} a_\beta + a_\beta a_\alpha^{\dagger} = 0, \quad \alpha \neq \beta \tag{26}
\end{equation}
$$