What is the physical interpretation of the operator \( a_\alpha \) and what is the effect of
\( a_\alpha \) on a given state \( |\alpha_1\alpha_2\dots\alpha_n\rangle_{\mathrm{AS}} \)?
Consider the following matrix element
$$
\begin{equation}
\langle\alpha_1\alpha_2 \dots \alpha_n|a_\alpha|\alpha_1'\alpha_2' \dots \alpha_m'\rangle \tag{11}
\end{equation}
$$
where both sides are antisymmetric. We distinguish between two cases. The first (1) is when
\( \alpha \in \{\alpha_i\} \). Using the Pauli principle of Eq.
(6) it follows
$$
\begin{equation}
\langle\alpha_1\alpha_2 \dots \alpha_n|a_\alpha = 0 \tag{12}
\end{equation}
$$
The second (2) case is when \( \alpha \notin \{\alpha_i\} \). It follows that an hermitian conjugation
$$
\begin{equation}
\langle \alpha_1\alpha_2 \dots \alpha_n|a_\alpha = \langle\alpha\alpha_1\alpha_2 \dots \alpha_n| \tag{13}
\end{equation}
$$