If it is present
we arrive at
$$
\begin{align}
a_\alpha^{\dagger} a_\alpha |\alpha_1\alpha_2 \dots \alpha_{k}\alpha \alpha_{k+1} \dots \alpha_{n-1}\rangle &=
a_\alpha^{\dagger} a_\alpha (-1)^k |\alpha \alpha_1\alpha_2 \dots \alpha_{n-1}\rangle \nonumber \\
= (-1)^k |\alpha \alpha_1\alpha_2 \dots \alpha_{n-1}\rangle &=
|\alpha_1\alpha_2 \dots \alpha_{k}\alpha \alpha_{k+1} \dots \alpha_{n-1}\rangle \nonumber \\
a_\alpha a_\alpha^{\dagger}|\alpha_1\alpha_2 \dots \alpha_{k}\alpha \alpha_{k+1} \dots \alpha_{n-1}\rangle &= 0 \tag{21}
\end{align}
$$
From Eqs.
(20) and
(21) we arrive at
$$
\begin{equation}
\{a_\alpha^{\dagger} , a_\alpha \} = a_\alpha^{\dagger} a_\alpha + a_\alpha a_\alpha^{\dagger} = 1 \tag{22}
\end{equation}
$$