We express the one-body operator \( \hat{H}_0 \) in terms of the quasi-particle creation and annihilation operators, resulting in
$$
\begin{eqnarray}
\hat{H}_0 &=& \sum_{\alpha\beta > F} \langle \alpha|\hat{h}_0|\beta\rangle b_\alpha^\dagger b_\beta +
\sum_{\begin{array}{c} \alpha > F \\ \beta \leq F \end{array}} \left[
\langle \alpha|\hat{h}_0|\beta\rangle b_\alpha^\dagger b_\beta^\dagger +
\langle \beta|\hat{h}_0|\alpha\rangle b_\beta b_\alpha \right] \nonumber \\
&+& \sum_{\alpha \leq F} \langle \alpha|\hat{h}_0|\alpha\rangle -
\sum_{\alpha\beta \leq F} \langle \beta|\hat{h}_0|\alpha\rangle
b_\alpha^\dagger b_\beta \tag{77}
\end{eqnarray}
$$
The first term gives contribution only for particle states, while the last one
contributes only for holestates. The second term can create or destroy a set of
quasi-particles and
the third term is the contribution from the vacuum state \( |c\rangle \).