If we use Eq.
(60) as our new reference state, we can simplify considerably the representation of
this state
$$
\begin{equation}
|c\rangle \equiv |\alpha_1\alpha_2\dots\alpha_{n-1}\alpha_n\rangle =
a_{\alpha_1}^\dagger a_{\alpha_2}^\dagger \dots a_{\alpha_{n-1}}^\dagger a_{\alpha_n}^\dagger |0\rangle \tag{63}
\end{equation}
$$
The new reference states for the \( n+1 \) and \( n-1 \) states can then be written as
$$
\begin{eqnarray}
|\alpha_1\alpha_2\dots\alpha_{n-1}\alpha_n\alpha_{n+1}\rangle &=& (-1)^n a_{\alpha_{n+1}}^\dagger |c\rangle
\equiv (-1)^n |\alpha_{n+1}\rangle_c \tag{64} \\
|\alpha_1\alpha_2\dots\alpha_{n-1}\rangle &=& (-1)^{n-1} a_{\alpha_n} |c\rangle
\equiv (-1)^{n-1} |\alpha_{n-1}\rangle_c \tag{65}
\end{eqnarray}
$$