Show that the twobody part of the Hamiltonian
$$
\hat{H}_I = \frac{1}{4} \sum_{pqrs} \langle pq|\hat{v}|rs\rangle a^\dagger_p a^\dagger_q a_s a_r,
$$
can be written, using standard annihilation and creation operators, in normal-ordered form as
$$
\hat{H}_I =\frac{1}{4} \sum_{pqrs} \langle pq|\hat{v}|rs\rangle \left\{a^\dagger_p a^\dagger_q a_s a_r\right\}
+ \sum_{pqi} \langle pi|\hat{v}|qi\rangle \left\{a^\dagger_p a_q\right\}
+ \frac{1}{2} \sum_{ij}\langle ij|\hat{v}|ij\rangle.
$$
Explain again the meaning of the various symbols.
This exercise is optional: Derive the normal-ordered form of the threebody part of the Hamiltonian.
$$
\hat{H}_3 = \frac{1}{36} \sum_{\substack{pqr \\ stu}}
\langle pqr|\hat{v}_3|stu\rangle a^\dagger_p a^\dagger_q a^\dagger_r a_u a_t a_s,
$$
and specify the contributions to the twobody, onebody and the scalar part.