Changing the summation indices
\( \alpha \) and \( \beta \) in
(51) we obtain
$$
\begin{equation}
\sum_{\alpha\beta} \langle \alpha\beta|\hat{v}|\gamma\delta\rangle a^{\dagger}_\alpha a^{\dagger}_\beta a_\delta a_\gamma =
\sum_{\alpha\beta} \langle \alpha\beta|\hat{v}|\delta\gamma\rangle
a^{\dagger}_\alpha a^{\dagger}_\beta a_\gamma a_\delta \tag{52}
\end{equation}
$$
From this it follows that the restriction on the summation over \( \gamma \) and \( \delta \) can be removed if we multiply with a factor \( \frac{1}{2} \), resulting in
$$
\begin{equation}
\hat{H}_I = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta|\hat{v}|\gamma\delta\rangle
a^{\dagger}_\alpha a^{\dagger}_\beta a_\delta a_\gamma \tag{53}
\end{equation}
$$
where we sum freely over all single-particle states \( \alpha \),
\( \beta \), \( \gamma \) og \( \delta \).