In Eq.
(35)
we have expressed the action of the one-body operator
of Eq.
(31) on the \( n \)-body state in its second quantized form.
This equation can be further manipulated if we use the properties of the creation and annihilation operator
on each primed quantum number, that is
$$
\begin{equation}
|\alpha_1\alpha_2 \dots \alpha_k' \dots \alpha_{n}\rangle =
a_{\alpha_k'}^{\dagger} a_{\alpha_k} |\alpha_1\alpha_2 \dots \alpha_k \dots \alpha_{n}\rangle \tag{36}
\end{equation}
$$
Inserting this in the right-hand side of Eq.
(35) results in
$$
\begin{eqnarray}
\hat{H}_0|\alpha_1\alpha_2 \dots \alpha_{n}\rangle &=& \sum_{\alpha_1'}\langle \alpha_1'|\hat{h}_0|\alpha_1\rangle
a_{\alpha_1'}^{\dagger} a_{\alpha_1} |\alpha_1\alpha_2 \dots \alpha_{n}\rangle \nonumber \\
&+& \sum_{\alpha_2'} \langle \alpha_2'|\hat{h}_0|\alpha_2\rangle
a_{\alpha_2'}^{\dagger} a_{\alpha_2} |\alpha_1\alpha_2 \dots \alpha_{n}\rangle \nonumber \\
&+& \dots \nonumber \\
&+& \sum_{\alpha_n'} \langle \alpha_n'|\hat{h}_0|\alpha_n\rangle
a_{\alpha_n'}^{\dagger} a_{\alpha_n} |\alpha_1\alpha_2 \dots \alpha_{n}\rangle \nonumber \\
&=& \sum_{\alpha, \beta} \langle \alpha|\hat{h}_0|\beta\rangle a_\alpha^{\dagger} a_\beta
|\alpha_1\alpha_2 \dots \alpha_{n}\rangle \tag{37}
\end{eqnarray}
$$