The variational condition for deriving the Hartree-Fock equations guarantees only that the expectation value \( \langle c | \hat{H} | c \rangle \) has an extreme value, not necessarily a minimum. To figure out whether the extreme value we have found is a minimum, we can use second quantization to analyze our results and find a criterion
for the above expectation value to a local minimum. We will use Thouless' theorem and show that
$$
\frac{\langle c' |\hat{H} | c'\rangle}{\langle c' |c'\rangle} \ge \langle c |\hat{H} | c\rangle= E_0,
$$
with
$$
{|c'\rangle} = {|c\rangle + |\delta c\rangle}.
$$
Using Thouless' theorem we can write out \( {|c'\rangle} \) as
$$
\begin{align}
{|c'\rangle}&=\exp\left\{\sum_{a > F}\sum_{i \le F}\delta C_{ai}a_{a}^{\dagger}a_{i}\right\}| c\rangle
\tag{89}\\
&=\left\{1+\sum_{a > F}\sum_{i \le F}\delta C_{ai}a_{a}^{\dagger}
a_{i}+\frac{1}{2!}\sum_{ab > F}\sum_{ij \le F}\delta C_{ai}\delta C_{bj}a_{a}^{\dagger}a_{i}a_{b}^{\dagger}a_{j}+\dots\right\}
\tag{90}
\end{align}
$$
where the amplitudes \( \delta C \) are small.