We introduce second quantization via the relation
$$
\begin{eqnarray}
&& a_{\alpha_k'}^{\dagger} a_{\alpha_l'}^{\dagger} a_{\alpha_l} a_{\alpha_k}
|\alpha_1\alpha_2\dots\alpha_k\dots\alpha_l\dots\alpha_n\rangle \nonumber \\
&=& (-1)^{k-1} (-1)^{l-2} a_{\alpha_k'}^{\dagger} a_{\alpha_l'}^{\dagger} a_{\alpha_l} a_{\alpha_k}
|\alpha_k\alpha_l \underbrace{\alpha_1\alpha_2\dots\alpha_n}_{\neq \alpha_k,\alpha_l}\rangle \nonumber \\
&=& (-1)^{k-1} (-1)^{l-2}
|\alpha_k'\alpha_l' \underbrace{\alpha_1\alpha_2\dots\alpha_n}_{\neq \alpha_k',\alpha_l'}\rangle \nonumber \\
&=& |\alpha_1\alpha_2\dots\alpha_k'\dots\alpha_l'\dots\alpha_n\rangle \tag{47}
\end{eqnarray}
$$