Using the commutation relations we get
$$
\begin{eqnarray}
&& a_{\alpha_2} a_{\alpha_1}a^{\dagger}_\alpha a^{\dagger}_\beta
a_\delta a_\gamma a_{\beta_1}^{\dagger} a_{\beta_2}^{\dagger} \nonumber \\
&=& a_{\alpha_2} a_{\alpha_1}a^{\dagger}_\alpha a^{\dagger}_\beta
( a_\delta \delta_{\gamma \beta_1} a_{\beta_2}^{\dagger} -
a_\delta a_{\beta_1}^{\dagger} a_\gamma a_{\beta_2}^{\dagger} ) \nonumber \\
&=& a_{\alpha_2} a_{\alpha_1}a^{\dagger}_\alpha a^{\dagger}_\beta
(\delta_{\gamma \beta_1} \delta_{\delta \beta_2} - \delta_{\gamma \beta_1} a_{\beta_2}^{\dagger} a_\delta -
a_\delta a_{\beta_1}^{\dagger}\delta_{\gamma \beta_2} +
a_\delta a_{\beta_1}^{\dagger} a_{\beta_2}^{\dagger} a_\gamma ) \nonumber \\
&=& a_{\alpha_2} a_{\alpha_1}a^{\dagger}_\alpha a^{\dagger}_\beta
(\delta_{\gamma \beta_1} \delta_{\delta \beta_2} - \delta_{\gamma \beta_1} a_{\beta_2}^{\dagger} a_\delta \nonumber \\
&& \qquad - \delta_{\delta \beta_1} \delta_{\gamma \beta_2} + \delta_{\gamma \beta_2} a_{\beta_1}^{\dagger} a_\delta
+ a_\delta a_{\beta_1}^{\dagger} a_{\beta_2}^{\dagger} a_\gamma ) \tag{55}
\end{eqnarray}
$$