The first case results in
$$
\begin{eqnarray}
a_\alpha^{\dagger} a_\beta |\alpha\beta\alpha_1\alpha_2 \dots \alpha_{n-2}\rangle = 0 \nonumber \\
a_\beta a_\alpha^{\dagger} |\alpha\beta\alpha_1\alpha_2 \dots \alpha_{n-2}\rangle = 0 \tag{23}
\end{eqnarray}
$$
while the second case gives
$$
\begin{eqnarray}
a_\alpha^{\dagger} a_\beta |\beta \underbrace{\alpha_1\alpha_2 \dots \alpha_{n-1}}_{\neq \alpha}\rangle &=&
|\alpha \underbrace{\alpha_1\alpha_2 \dots \alpha_{n-1}}_{\neq \alpha}\rangle \nonumber \\
a_\beta a_\alpha^{\dagger} |\beta \underbrace{\alpha_1\alpha_2 \dots \alpha_{n-1}}_{\neq \alpha}\rangle &=&
a_\beta |\alpha\underbrace{\beta \alpha_1\alpha_2 \dots \alpha_{n-1}}_{\neq \alpha}\rangle \nonumber \\
&=& - |\alpha\underbrace{\alpha_1\alpha_2 \dots \alpha_{n-1}}_{\neq \alpha}\rangle \tag{24}
\end{eqnarray}
$$