$$
\Phi_{AS}(\alpha_1, \dots, \alpha_A; x_1, \dots x_A)=
\frac{1}{\sqrt{A}} \sum_{\hat{P}} (-1)^P \hat{P} \prod_{i=1}^A \psi_{\alpha_i}(x_i),
$$
which is equivalent with \( |\alpha_1 \dots \alpha_A\rangle= a_{\alpha_1}^{\dagger} \dots a_{\alpha_A}^{\dagger} |0\rangle \). We have also
$$
a_p^\dagger|0\rangle = |p\rangle, \quad a_p |q\rangle = \delta_{pq}|0\rangle
$$
$$
\delta_{pq} = \left\{a_p, a_q^\dagger \right\},
$$
and
$$
0 = \left\{a_p^\dagger, a_q \right\} = \left\{a_p, a_q \right\} = \left\{a_p^\dagger, a_q^\dagger \right\}
$$
$$
|\Phi_0\rangle = |\alpha_1 \dots \alpha_A\rangle, \quad \alpha_1, \dots, \alpha_A \leq \alpha_F
$$